
1 Class Generator Users Guide
ClassGenerator is an easy to use, source code generator, which uses pre-
formatted templates. The source code templates include tag-based commands,
which are interpreted respectively by the parser.

The general procedure would be:

i. Select one or more templates.
ii. Select the tables that reside in one or more databases.
iii. Issue the command to generate the real source files.

The generated files could be VB (ver. 6.0 or earlier) classes or forms, VB .NET
classes / forms, ASP pages, ASP .NET WebForms, etc. Actually the generated files
could be of any type – the generator does not care / discriminate file types – as
long as there is a template to parse.

Note: The parser does not execute syntax analysis on the template, so any
miswritten templates lead to failed code generation.

2 Main Application Window
The main window holds all the information needed by ClassGenerator to execute
and generate source files. Top to bottom there are the below GUI controls:

GUI Control Description Comments
Output File The full path of the

generated file. For multiple
classes / templates this is
the output directory. When
generating multiple classes
you can change each class’
path by selecting it in the
Classes List View and
editing this textbox.

Output File Browse Button
[…]

Press the button to locate
the target directory.

Template File The full path of the selected
template file. If Use Multiple
Templates is selected you
can add more templates by
simply pressing the
Template File Browse
Button […] and selecting the
needed template. The
above procedure is followed
once for every template.
The selected templates are
shown in the list below.

Template File Browse
Button […]

Press the button to open
the template selection
dialog box.

Use Multiple Templates Check if using more than
one template file. Default
value unchecked.

Create Separate Folders Check if you want to create
folders for each class in the
Classes List View. Default
value unchecked.

The folder will have
the class’ name. All
generated files will
have the name of the
corresponding
template file.

Remove Template File
Button [-]

Removes the selected in the
list template file. Applies
only when Use Multiple
Templates is checked.

Class Name The name of the selected
class in the Classes List
View.

Tag: CLASS_NAME

Table Name The respective table name
of the selected class in the
Classes List View.

Tag: TABLE_NAME

Table Name Format Button
[#]

Defines the pattern used to
extract the class name from
the table name. Default
value
tbl<%TABLE_NAME%>

e.g. if the table name
is tblTest, the class
name would be Test.

Project Name The project name the
class(es) belong. Usually
needed by .NET code.

Tag: PROJECT_NAME

Options Button
Classes List View The classes exported by the

Database Explorer. You can
change the class name by
editing the item entry name
in the List View. Selecting
an item fills the textboxes
above (class name, table
name, output file). Editing
these textboxes refreshes
class properties accordingly.

Use Multiple Classes Check if using more than
one class. Default value
checked.

Properties List View The properties of the
selected class in the Classes
List View. For each property
you can see the database
type, the (VB) mapped type
and the length when
appropriate.

Add Property Button Deprecated.
Remove Property Button Deprecated.
Edit Property Button Deprecated.
Database Schema Button Opens the Database

Explorer to choose the
tables to export as classes.
Each export from Database
Explorer clears the
previously selected classes.

Generate Classes Button Runs the parser for each
class in Classes List View,

for the selected
template(s).

The main window of ClassGenerator is shown below (Figure 1 Class Generator
Main Window).

Figure 1 Class Generator Main Window

3 Generated File(s) Target Directory
You can define the directory where the generated files will be saved. You can
either type the full path, or select the target directory using the browse dialog
box. The browse dialog box appears by pressing the button besides the text box
[…]. The select directory dialog box is shown below (Figure 2 Select Directory
Dialog Box)

Figure 2 Select Directory Dialog Box

4 Template File(s) Browser
You can define the full path of the template to be used by the parser, or select it
by using the browsing dialog box. To open the dialog box, press the button
besides the textbox […]. The system’s open file dialog box appears (Figure 3
Template Files Browse Dialog Box).

Figure 3 Template Files Browse Dialog Box

Only one file at a time can be selected. By default the dialog is set to filter files to
known file types. Known file types are:

VB Class Files (*.cls)
VB Form Files (*.frm;*.frx)
Active Server Pages (*.asp)
VB .NET Class Files (*.vb)
VB .NET Form Files (*.vb;*.resx)

ASP .NET (*.aspx;*.aspx.resx;*.aspx.vb)
C# (*.cs)

However, one can select the no filter option All Files (*.*), to see all files in the
selected directory.

4.1 Using Multiple Templates
If Use Multiple Templates is checked you can add multiple template files. Press
the browse template files button […], select one and press the OK button. The
full path of the selected template file is added in the list box below the Template
File text box. You can as many template files as you want. To remove an
unwanted template file from the list, select the file and press the remove button,
which is next to the list box [-].

If Create Separate Folders is checked (default value is unchecked) the
generated files will be created under the defined output directory, in a folder
named after the selected class. This means that for every item in the Classes list
view a new folder will be created (if not already existing – existing directories will
not loose any files). For every selected template file a file will be created with the
name of that template file.

On the other hand, the generated file will take the name of the corresponding
class and the extension of the template file. Since this is the case, when selecting
more than one template files with the same extension, only one file will be
generated, the one of the last template in the list. Actually all files will be created
but the later will overwrite the previous.

If Create One File is selected, the generator apart from creating a file per table /
class, it will combine the contents of all generated files to one file merged.txt.

5 Database Explorer
To open the Database Explorer press the Database Schema button in the main
window. The Database Explorer lets you create database connections to MS SQL
Server and MS Access databases. After creating the connection to the desired
database you can navigate the tables and views of this database, view the fields
for each table and export (as classes) the selected tables. The Database Explorer
lets you export tables from different databases. The Database Explorer window is
shown below (Figure 4 Database Explorer).

Figure 4 Database Explorer

The Database Explorer is divided in three major sections. On the left lies the
database connections tree view. You can see the tables of one database in this
pane. On the right we have the fields and the foreign keys list views.

Data sources are added by right-clicking in the connections tree view and
selecting the Add Datasource menu item, or by pressing the Add Datasource
button (for details see 5.1 Data sources).

Each item in the tree view has a check box on the left. You check table items to
export to ClassGenerator. By clicking on the item (table) name the fields and
foreign keys list views are refreshed. The information one can get from the
columns of each list view is explained in the below table:

Table Fields
Column Description

Checkbox [Primary Key] If checked, the field is part of the table’s primary
key

Name Field name
Type Field type (SQL Server native types for SQL SQL

databases / ADO types for Access databases)
Mapped Type VB mapped type
Length Field length (in VB)
Mandatory True if field is not allowed to be null
Auto Increment True if the field is auto number (identity)
DB Length Field length as defined in the database

Foreign Keys
Column Description

Field Name The foreign key field name
Related Field The referenced field name
Related Table The referenced table name
Foreign Key Name The foreign key name as defined in the database

The check box Export Foreign Keys (default value is checked) is used to export
the foreign keys information to ClassGenerator (for more details see 5.2 Class
Generator Users Guide).

You export the selected tables as classes to ClassGenerator by pressing the
Export button.

5.1 Data sources
You can add new database connections with the Add Data Source dialog box
(Figure 5 Add Data Source Dialog Box).

Figure 5 Add Data Source Dialog Box

The fields in the dialog are:

Field Description
DBMServer Type Defines the target database MS SQL

Server or MS Access.
Access Database The path of the mdb file. Enabled only

when DBMServer Type is Access.
User Name The user name used to authenticate to

the database.
Password The password for the above user name.
Use Integrated Security Log in using the windows credentials.
Server Name The name of the server where SQL

Server process runs. Enabled only
when DBMServer Type is SQL Server.

Databases The databases established in the above
server. Enabled only when DBMServer
Type is SQL Server.

5.2 Export Foreign Keys
If the Export Foreign Keys is checked in the Database Explorer, the Foreign
Keys Export dialog box appears (Figure 6 Foreign Keys Export Dialog Box).

Figure 6 Foreign Keys Export Dialog Box

The fields in the top list view are:

Column Description
Class Name The class name for grouping foreign keys data.
Field Name The foreign key field name
Related Field The referenced field name
Related Table The referenced table name
Related Description Field The description field, which belongs in the

Related Table. The data stored in this field are
usually shown in GUIs instead of the values in
Related Field (e.g. lookup tables).

Related Class Name The description field, which belongs in the
Related Table. The data stored in this field are
usually shown in GUIs instead of the values in
Related Field (e.g. lookup tables).

Foreign Key Name The foreign key name as defined in the
database

The foreign keys list is already filled-in, if such meta-information is defined in the
database. All columns are already filled-in except Related Description Field and
Related Class Name. By right-clicking (context menu) and selecting Auto
Complete Foreigh Keys the Related Class Name is auto completed. Only the
Related Description Field remains to be filled. You can do that by double-clicking
on the row, or by selecting the Related Description Field in context menu.

You can cancel editing the foreign key relationship by pressing escape (ESC).

The Allow Self Reference check-box, is self explanatory, it allows one table to
reference itself (and it shows it self in the Related Table columns).

In the bottom list view you can create master / detail relationships (e.g. Orders
to OrderDetails). These relationships are created manually. You can do that by
either selecting the New MD button, or the Add Master Detail Relationship in
context menu (a table name row must be selected in the list view).

You can cancel editing the master / detail relationship by pressing escape (ESC).
When editing, you can move from one column to another by pressing Enter.

6 Options
In the Options form you can define various application settings, such as:

 Start Tag
 End Tag
 Auto detect tag literals
 Export foreign keys
 Allow self reference

The first three options can be overridden when using template directives.

6.1 Registry Keys / Values
All registry keys used by ClassGenerator reside in:

 HKEY_LOCAL_MACHINE\SOFTWARE\ClassGenerator

Data sources are saved in:

 HKEY_LOCAL_MACHINE\SOFTWARE\ClassGenerator\DataSources

7 Directives
Directives are special parser commands that can alter its behavior. Only one
directive is allowed in each line, starting with two hash marks (##).
The complete list of directives follows:

##DIRECTIVE START_TAG=<% END_TAG=%>
##DIRECTIVE MAP_TYPE String=String
##DIRECTIVE MAP_TYPE Integer=Integer
##DIRECTIVE MAP_TYPE Long=Integer
##DIRECTIVE MAP_TYPE Double=Double
##DIRECTIVE MAP_TYPE Date=Date
##DIRECTIVE MAP_TYPE Boolean=Boolean
##DIRECTIVE MAP_TYPE Variant=Object
##DIRECTIVE MAP_TYPE Object=Object
##DIRECTIVE MAP_TYPE Decimal=Decimal
##DIRECTIVE FILE_NAME_FORMAT=<%CLASS_NAME%>

There are three directive categories:

 start / end tags (##DIRECTIVE START_TAG=<% END_TAG=%>)
 types mapping (##DIRECTIVE MAP_TYPE)
 generated file name format (##DIRECTIVE FILE_NAME_FORMAT)

Note: All directives are case sensitive.

8 Parser Tags
There are 4 types of parser tags:

 Simple / single line tags
 Variable tags (allows base integer arithmetic functions)
 Loops
 If…Then…Else clauses

Note: All tags are case sensitive. One tag must start and end in the same line.

8.1 Simple / single line tags

Tag Description Empty Line
CLASS_NAME The name of the produced class
TABLE_NAME The source database table name
FIELDS_NUMBER The number of table fields
PRIMARY_KEY The field name of the primary key (if the PK is

consisted by one field)

MULTIPLE_PRIMARY_KEYS The number of fields consisting the PK
PROJECT_NAME The name of the project the generated class will

be used in

8.2 Variable tags

Tag Description Empty Line
VAR_DEFINE Defines a variable TRUE
VAR_WRITE Outputs variable value to generated file
VAR_EVAL Evaluates the new value of the variable using

simple functions
TRUE

Examples:
<%VAR_DEFINE A = 10%>
<%VAR_DEFINE B = .DAL.%>

<%PROJECT_NAME%><%VAR_WRITE B%><%CLASS_NAME%>

<%FOREACH PROPERTY IN PROPERTIES %>
<% PROPERTY%>
<%VAR_EVAL A = A + 10%>
A = <%VAR_WRITE A%>
<%END FOREACH%>

8.3 Loops
Nested ForEach…In loops are allowed, without maximum limit. ForEach…In
loops are allowed in conjunction with IfThenElse clauses.

Tag Description Empty Line
FOREACH…IN Start ForEach…In loop
END FOREACH End ForEach…In loop

Items that can be enumerated by ForEach…In statements are:

 PROPERTIES
 PROPERTIES_TYPES
 COUNTER

 PK_FIELDS
 MD_CLASSES_NAMES
 MD_TABLES_NAMES
 MD_PROPERTIES
 MD_PK_FIELDS
 MD_PROPERTIES_TYPES

Property attributes that can be visible in ForEach…In statements are:

 CLASS_NAME
 TABLE_NAME
 ITEM_IS_FIRST
 ITEM_IS_LAST
 PROPERTY_IS_AUTO_INC
 PROPERTY_IS_PRIMARY_KEY
 PROPERTY_IS_MANDATORY
 PROPERTY_DB_TYPE
 PROPERTY_LENGTH
 PROPERTY_DB_LENGTH
 PROPERTY_IS_NUMERIC
 PROPERTY_IS_FOREIGN_KEY
 PROPERTY_FK_RELATED_FIELD_NAME
 PROPERTY_FK_RELATED_TABLE_NAME
 PROPERTY_FK_RELATED_DESCR_FIELD_NAME
 PROPERTY_FK_RELATED_CLASS_NAME
 MD_PK_FIELDS_NUMBER
 MD_PROPERTY_IS_AUTO_INC
 MD_PROPERTY_IS_PRIMARY_KEY
 MD_PROPERTY_IS_MANDATORY
 MD_PROPERTY_DB_TYPE
 MD_PROPERTY_LENGTH
 MD_PROPERTY_DB_LENGTH
 MD_PROPERTY_IS_NUMERIC

Note that you have to define these attributes as parameters in ForEach…In
statement.

All attributes defined in ForEach…In are separated with one space (“ ”).

Examples:
<%FOREACH PROPERTY PROPERTY_TYPE PROPERTY_IS_AUTO_INC PROPERTY_IS_NUMERIC
PROPERTY_IS_FOREIGN_KEY PROPERTY_IS_MANDATORY IN PROPERTIES PROPERTIES_TYPES
PROPERTY_IS_AUTO_INC PROPERTY_IS_NUMERIC PROPERTY_IS_FOREIGN_KEY
PROPERTY_IS_MANDATORY%>
<%IF PROPERTY_IS_MANDATORY = True AND PROPERTY_IS_NUMERIC = True AND
PROPERTY_IS_AUTO_INC = False THEN%>
 <%PROPERTY%> : Mandatory & Numeric – Not identity field
<%ELSE IF PROPERTY_IS_AUTO_INC = True THEN%>
 <%PROPERTY%> : Identity field
<%END IF%>

<%IF PROPERTY_TYPE = Boolean THEN%>
 <%PROPERTY%> as <%PROPERTY_TYPE%> [boolean]
<%ELSE IF PROPERTY_TYPE = String THEN%>
 <%PROPERTY%>(<%PROPERTY_LENGTH%>) as <%PROPERTY_TYPE%> [string]
<%IF PROPERTY_IS_FOREIGN_KEY = True THEN%>
 PROPERTY_IS_FOREIGN_KEY = True
<%END IF%>
<%ELSE IF PROPERTY_IS_NUMERIC = True THEN%>
 <%PROPERTY%> as <%PROPERTY_TYPE%> [NUMERIC]
<%IF PROPERTY_IS_FOREIGN_KEY = True THEN%>

 PROPERTY_IS_FOREIGN_KEY = True

 <%PROPERTY_FK_RELATED_TABLE_NAME%>.<%PROPERTY_FK_RELATED_FIELD_NAME%>
[<%PROPERTY_FK_RELATED_DESCR_FIELD_NAME%>]
<%END IF%>
<%END IF%>
<%IF ITEM_IS_LAST = True THEN%>
--------- ITEM_IS_LAST <%PROPERTY%> -------------
<%END IF%>
<%IF ITEM_IS_FIRST = True THEN%>
--------- ITEM_IS_FIRST <%PROPERTY%> -------------
<%END IF%>
<%END FOREACH%>

Note: Due to limited page width, lines are wrapped

The result of applying the above template on Northwind tables Orders &
OrderDetails follows:

Order.vb
 OrderID : Identity field

 OrderID as Long [NUMERIC]
--------- ITEM_IS_FIRST OrderID -------------

 CustomerID(5) as String [string]
 PROPERTY_IS_FOREIGN_KEY = True

 EmployeeID as Long [NUMERIC]
 PROPERTY_IS_FOREIGN_KEY = True
 Employees.EmployeeID [LastName]

 ShipVia as Long [NUMERIC]
 PROPERTY_IS_FOREIGN_KEY = True
 Shippers.ShipperID [CompanyName]

 Freight as Double [NUMERIC]

 ShipName(40) as String [string]

 ShipAddress(60) as String [string]

 ShipCity(15) as String [string]

 ShipRegion(15) as String [string]

 ShipPostalCode(10) as String [string]

 ShipCountry(15) as String [string]
--------- ITEM_IS_LAST ShipCountry -------------

OrderDetail.vb
 OrderID : Mandatory & Numeric – Not identity field

 OrderID as Long [NUMERIC]
 PROPERTY_IS_FOREIGN_KEY = True
 Orders.OrderID [OrderID]
--------- ITEM_IS_FIRST OrderID -------------
 ProductID : Mandatory & Numeric – Not identity field

 ProductID as Long [NUMERIC]
 PROPERTY_IS_FOREIGN_KEY = True
 Products.ProductID [ProductName]
 UnitPrice : Mandatory & Numeric – Not identity field

 UnitPrice as Double [NUMERIC]

 Quantity : Mandatory & Numeric – Not identity field

 Quantity as Integer [NUMERIC]
 Discount : Mandatory & Numeric – Not identity field

 Discount as Double [NUMERIC]
--------- ITEM_IS_LAST Discount -------------

8.4 If…Then…Else clauses
Nested If…Then…Else clauses are allowed in conjunction with ForEach loops
(no maximum limit of nested statements exists).

Tag Description Empty Line
IF … THEN Start If…Then clause
ELSE Start Else clause
ELSE IF … THEN Start Else If…Then clause
END IF End If clause

Most of property attributes are allowed to be used in If…Then…Else clauses
(examples are shown in ForEach…In section):

 MULTIPLE_PRIMARY_KEYS
 PK_FIELDS_NUMBER
 PRIMARY_KEY_IS_AUTO_INC
 PROPERTY_IS_AUTO_INC
 PROPERTY_IS_PRIMARY_KEY
 PROPERTY_IS_MANDATORY
 PROPERTY_DB_TYPE
 PROPERTY_LENGTH
 PROPERTY_DB_LENGTH
 PROPERTY_IS_NUMERIC
 PROPERTY_IS_FOREIGN_KEY
 PROPERTY_FK_RELATED_FIELD_NAME
 PROPERTY_FK_RELATED_TABLE_NAME
 PROPERTY_FK_RELATED_DESCR_FIELD_NAME
 ITEM_IS_LAST
 ITEM_IS_FIRST
 HAS_MASTER_DETAIL_CLASSES
 MD_PK_FIELDS_NUMBER
 MD_PROPERTY_IS_AUTO_INC
 MD_PROPERTY_IS_PRIMARY_KEY
 MD_PROPERTY_IS_MANDATORY
 MD_PROPERTY_DB_TYPE
 MD_PROPERTY_LENGTH
 MD_PROPERTY_DB_LENGTH
 MD_PROPERTY_IS_NUMERIC

	1 Class Generator Users Guide
	2 Main Application Window
	3 Generated File(s) Target Directory
	4 Template File(s) Browser
	4.1 Using Multiple Templates
	5 Database Explorer
	5.1 Data sources
	5.2 Export Foreign Keys

	6 Options
	6.1 Registry Keys / Values

	7 Directives
	8 Parser Tags
	8.1 Simple / single line tags
	8.2 Variable tags
	8.3 Loops
	8.4 If…Then…Else clauses

